Can CEOs meaningfully guide technology work?

Leading, shaping, and guiding technology work is hard, even for technologists who spend all day doing it.  So, it seems the all-too-busy CEOs don’t stand a chance at effectively shaping their companies’ technical work.  And it’s not just the non-technologist CEOs who have a problem; the technologist CEOs also have a problem, as they don’t have sufficient time to dig deeply into the details or stay current on the state-of-the-art.  So, as a CEO, technologist or not, it is difficult to meaningfully lead, shape, and guide technical work.

So why is this technology stuff so hard to shape and guide?  Well, here are a few reasons: technologies have their own set of arcane languages, each with many dialects (and no dictionary); they have their own technology-centric acronyms that technologists mix and match as they see fit; and they are full of long-forgotten formulae.  And these formulae are composed of strange math shapes and symbols.  And, as if to elevate confusion to stratospheric levels, the math symbols are Greek letters.  So, literally, this technology stuff is written in Greek.  So what’s an all-too-busy CEO to do?  Read the rest of this entry »

Assess Design Alternatives With Axiomatic Design

Al Hamilton, of Axiomatic Design Solutions, wrote a good article on how Axiomatic Design can be used to evaluate multiple design alternatives.

Here is an excerpt from the article:

 

Four Design Spaces of Axiomatic Design

Axiomatic design breaks the design process into four domains, shown in Figure 1.  The customer domain can be thought of as the voice of the customer (VOC).

  1. The functional domain is initially populated by mapping the VOC into independent measurable functions. High-level functions are driven by the customer; lower-level functions are driven by design choices. Every function must be measurable.
  2. The physical domain is the domain of physics, chemistry, math and algorithms.
  3. The process domain is where the specifics of how the design parameters identified in the physical domain will be implemented.

Dr. Mike Shipulski, director of engineering at Hypertherm, a manufacturer of plasma cutting systems, has made extensive use of axiomatic design. Shipulski observes, “By first defining the functions we are to achieve, we align our problem solving on the right areas and broaden possible design opportunities. With axiomatic design, we have a framework for avoiding problems that are often detected only during system-level testing.”

Engage product design in DFMA now; achieve 30 to 50% later

I wrote an article on the level of savings when product designers are engaged in DFMA. 

Here is an excerpt:

 This month, Shipulski details the company’s lean product-design efforts as he issues a “call to action” for lean manufacturers everywhere to involve their product-design teams. 

Why should the manufacturing engineering community care about engaging the product design community in pursuits such as design for manufacturing (DFM) and design for assembly (DFM)? The answer is simple—to make (and save) money

How to organize for Lean / Six Sigma

John Teresco of Industry Week wrote a good article that shows how up upfront design enables the next level of improvments in Lean and Six Sigma.

Here are several excerpts:

At Hypertherm Inc., a manufacturer of plasma cutting systems, the DFMA software enabled a first pass part count reduction as high as 50%, says Mike Shipulski, Hypertherm’s director of engineering. About 500 parts were eliminated from the product, a main power supply sub-assembly that originally contained about 1,000 parts. Shipulski says the resulting reduction in assembly floor space requirements made it possible to satisfy a growing market demand within the existing building. “We didn’t have to add floor space.” Read the rest of this entry »

Let’s Fix US Manufacturing Competitiveness

(This post was published as an article.  View the article as a .pdf or .htm.)

Have we read enough, talked enough, circled, and delayed the issue enough to finally do something about the decline in US manufacturing?  Are we afraid enough yet, after each quarterly government trade report, to undertake what is obvious as far as engineering goes? We have the technical know-how in US manufacturing to take away the offshoring advantage of cheap labor.We can design high labor costs out of most products and have elegant assemblies ripple profitably down US manufacturing lines—for export and domestic consumption.

“We have to reassign the product costs mistakenly
placed on manufacturing departments.”

Read the rest of this entry »

Leading manufacturers cite upfront design creates significant downstream savings

Results from a new survey show that upfront design using DFMA methods creates significant savings in operational cost — downstream savings.

An exerpt from the survey:

Sixty-eight percent of a survey group, including Fortune 400 companies, measured an increase in production throughput, and 47 percent an increase in profit per unit of factory floor space, after applying Design for Manufacture and Assembly (DFMA®) techniques to their organizations’ supply chains. A roundtable discussion of these and other results from the questionnaire, conducted by Boothroyd Dewhurst, Inc., is now available.

Respondents included Dell, Motorola, TRW Automotive, Raytheon, MDS Analytical Technologies, Magna Intier Automotive Seating and other leading North American manufacturers. Some participants also contributed to a candid roundtable discussion about applying design simplification and early costing to Lean and Six Sigma programs, along with the opportunities missed by industry in measuring financial best practices.

“Hyper” for Lean

Hyper” for Lean — Lean Directions, SME

Hypertherm’s lean journey began in 1997 as a natural and enthusiastic extension of its long history of continuous improvement. Founded in 1968, the company’s “lean vision” includes training, application of 5S components, visual factory audits, single and mixed-model flow lines and the engagement of its product design functions.

A recent Hypertherm success is found in the company’s HyPerformance series of plasma arc, metalcutting systems. The company’s product design community designed a product line with Read the rest of this entry »

Allocating Responsibility for Manufacturing Cost

John Teresco of Industry Week wrote a thought-provoking article on assigning responsibility of product cost to the design engineering community (and not to the manufacturing community).

An expert from his article:

“We in the United States have mistakenly allocated the responsibility for [production] cost to the manufacturing folks. We forget that the cost has already been designed into the product.”

That’s Mike Shipulski, director of engineering with plasma cutting technology provider Hypertherm Inc., reflecting on one of the lessons learned from implementing Design for Manufacturing and Assembly (DFMA) software. The accomplishments include a 600% increase in profit per square foot of factory floor space within a five-year redesign program.  Correspondingly, warranty cost per unit declined more than 75% during the same period, from January 2003 to January 2008.

Boothroyd Dewhurst DFMA Helps Slash Warranty Costs and Boost Factory Floor Profits 600 Percent at Hypertherm

Five-year implementation of DFMA software by Hypertherm creates higher profits and strong business model for improving U.S. global competitiveness

WAKEFIELD, R.I., and HANOVER, N.H.,USA, June 2, 2008—Hypertherm, the world leader in plasma metal cutting technology, has achieved a 600 percent increase in profit per square foot of factory floor space using Boothroyd Dewhurst, Inc., Design for Manufacture and Assembly (DFMA®) software within a five-year redesign program. Correspondingly, warranty cost per unit has declined more than 75 percent during that same period, from January 2003 to January 2008.

 

Chart of Warranty Cost and Profit Per Square Foot

  Read the rest of this entry »

Measuring DFMA Savings

Wes Iverson, Managing Editor of Automation World, wrote a good artcle on DFMA’s ability to cut product cost, reduce part count, and save assembly floor space.

Measuring DFMA Savings — Automation World

 

An expert from his article:

When a Hypertherm team led by Shipulski designed a major new plasma cutting machine several years ago, the team was able to reduce the number of parts required to about 700, down from around 1,400 in the previous generation design. The result was a machine that took about four hours to build, compared to 10 hours for the previous unit, enabling Hypertherm to hit its 35 percent cost reduction target for the system.

Webinar on resurrecting manufacturing with Systematic DFMA Deployment

Mike Shipulski Mike Shipulski
Subscribe via Email

Enter your email address:

Delivered by FeedBurner

Archives